
Leah Hoffman

In Search of
Dependable Design
How can software and hardware developers
increase the reliability of their designs?

I
N 1994, an obscure circuitry
error was discovered in In
tel's Pentium I micropro
cessor. Thomas R. Nicely, a
mathematician then affiliated

with Lynchburg College in Virginia,
noticed that the chip gave incorrect an
swers to certain floating-point division
calculations. Other researchers soon
confirmed the problem and identified
additional examples. And though Intel
initially tried to downplay the mistake,
the company eventually responded
to mounting public pressure by
offering to replace each one of the
flawed processors.

"It was the first error to make the
evening news," recalls Edmund Clarke
of Carnegie Mellon University. The cost
to the company: around $500 million.

Nearly 15 years later, the Pentium
bug continues to serve as a sobering re
minder of how expensive design flaws
can be. The story is no different for soft
ware: a $170 million virtual case man
agement system was scrapped by the
FBI in 2005 due to numerous failings,
and a flawed IRS tax-processing system
consumed billions of dollars in the late
1990s before it was finally fixed. And in
an era in which people rely on comput
ers in practically every aspect of their
lives—in cars, cell phones, airplanes,
ATMs, and more—the cost of unreli
able design is only getting higher. Data
is notoriously difficult to come by, but
a 2002 study conducted by the National
Institute of Standards and Technology
(NIST) estimated that faulty software
alone costs the U.S. economy as much
as $59.5 billion a year in lost informa
tion, squandered productivity, and in
creased repair and maintenance.

But it's not just a matter of money—
increasingly, people's lives are at stake.
Faulty software has plunged cockpit
displays into darkness, sunk oil rigs,
and caused missiles to malfunction.

"There have been only a few real di
sasters due to software. But we're walk
ing closer and closer to the edge," says
MIT's Daniel Jackson.

Experts agree that flaws typically
arise not from minor bugs in code,
but during the higher-level design pro
cess. (Security flaws, which tend to be
caused by implementation-level vul
nerabilities, are often an exception to
this rule.) One class of problems arises
at the requirements phase: program
design requirements are often poorly
articulated, or poorly understood. An
other class arises from insufficient hu
man factors design, where engineers
make unwarranted assumptions about
the environment in which software or
hardware will operate. If a program
isn't capable of handling those unfore
seen conditions, it may fail.

But mistakes can happen at any
time. "Since humans aren't perfect,
humans make mistakes, and mistakes
can be made in any step of the develop
ment process," cautions Gerard Holz-

mann of the NASA/JPL Laboratory for
Reliable Software.

Holzmann is among a small group
of researchers who are committed
to developing tools, techniques, and
procedures for increasing design reli
ability. Currently, most programs are
debugged and then refined by random
testing. Testing can be useful to pin
point smaller errors, say researchers,
but inadequate when it comes to iden
tifying structural ones. And tests de
signed for specific scenarios may not
be able to explore combinations of be
havior that fall outside of anticipated
patterns. The search is therefore on for
additional strategies.

One promising technique is known
as model checking. The idea is to verify
the logic behind a particular software
or hardware design by constructing
a mathematical model and using an
algorithm to make sure it satisfies
certain requirements. Though the
task can be time consuming, it forces
developers to articulate their require
ments in a systematic, mathematical
way, thereby minimizing ambigu
ity. More importantly, however, model
checkers automatically give diagnostic
counterexamples when mistakes are
found, helping developers pinpoint
what went wrong and catch flaws be
fore they are coded.

"When people use the term 'reliabil
ity,' they might have some probabilis
tic notion that 'only rarely' do errors
crop up, whereas people in the formal
verification community mean that all
behaviors are correct against all speci
fied criteria," explains Allen Emerson
of the University of Texas at Austin. (In
recognition of the importance of for
mal verification techniques, the 2007
ACM A.M. Turing Award was given to
Edmund Clarke, Allen Emerson, and
Joseph Sifakis for their pioneering
work in model checking. A Q&A with

14 COMMUNICATIONS OF THE ACM JULY 2008 I VOL. 51 1 NO. 7

news

the three Turing recipients can be
found on page 112.)

Model checking has proven extreme
ly successful at verifying hardware de
signs. In fact, Xudong Zhao, a graduate
student of Clarke's, showed that model
checking could have found Intel's float
ing-point division error—and that the
company's fix did indeed correct the
problem. Since then, Intel has been a
leading user of the technique.

But because even small programs
can have millions of different states (a
dilemma known to the discipline as
the "state explosion problem"), there
are limits to the size and complexity of
designs that model checking can verify,
and it's been less immediately success
ful for software. The verification of reac
tive systems—the combination of hard
ware and software interacting with an
external environment—also remains
problematic, due mainly to the difficul
ty of constructing faithful models.

"We've come a long way in the last
28 years, and there's a huge, huge dif
ference in the scale of problems we can
address now as opposed to 1980," says
Holzmann. "But of course we are more
ambitious and our applications have
gotten more complex, so there is a lot
more to be done."

Other techniques include special
ized programming languages and en
vironments that facilitate the creation
of reliable, reusable software modules.
Eiffel, developed by the Swiss Federal

"How can you ever
hope to build a
dependable system
if you don't know
what 'dependable'
means?" asks MIT's
Daniel Jackson.

Institute of Technology's Bertrand Mey
er and recipient of ACM's 2006 Software
System Award, is one well-known ex
ample; Alloy, a tool developed by Daniel
Jackson and the MIT Software Design
Group, has also shown great promise.

To supplement the new languages
and techniques, other researchers
have focused on outlining more effec
tive procedures and methodologies for
developers to follow as they work.

"I'm not a great believer in for
mal analysis," says Grady Booch of
IBM Research. "Problems tend to
appear at this curious intersection
of the technological and the social."
After monitoring 50 developers for
24 hours, for example, Booch found
that only 30% of their time was spent
coding—the rest was spent talking to

other members of their team. Avoid
ing miscommunication, he believes,
is therefore critical. Booch is perhaps
best known for developing (with Ivar
Jacobson and James Rumbaugh) the
Unified Markup Language, or UML,
a language that uses graphical nota
tions to create an abstract model of
a software or hardware system and
helps teams communicate, explore,
and validate potential designs. More
recently, he has continued to focus on
the big picture of development with
the online Handbook of Software Ar
chitecture, which brings together a
large collection of software-intensive
systems and presents them in a man
ner that "exposes their essential pat
terns and that permits comparisons
across domains and architectural
styles." The ultimate goal, of course,
is to help developers apply that time-
tested knowledge to their own pro
gramming projects.

"Reuse is easier at a higher level of
abstraction," explains Booch. "So we can
reuse patterns, if not necessarily code."

MIT's Daniel Jackson is another
strong believer in the "big picture" ap
proach. "The first thing we need to do
is be honest about the level of reliabil
ity that we need," he asserts. "The sec
ond thing is to think about what really
cannot go wrong—about what's mis
sion critical and what's not."

Rather than starting with a typical
requirements document that outlines

